MA114 Summer 2018 Worksheet 26 – Differential Eq. I – 7/30/18

- 1. a) Is $y = \sin(3x) + 2e^{4x}$ a solution to the differential equation $y'' + 9y = 50e^{4x}$? Explain why or why not.
 - b) Explain why every solution of $dy/dx = y^2 + 6$ must be an increasing function.
 - c) What does it mean to say that a differential equation is linear or nonlinear?
- 2. Find all values of α so that $y(x) = e^{\alpha x}$ is a solution of the differential equation y'' + y' 12y = 0.
- 3. Show that for any value of c, $y = x^2 + \frac{c}{x^2}$ is a solution to the differential equation $xy' + 2y = 4x^2$, (x > 0). Find the value of c for which the solution satisfies the initial condition y(6) = 5.
- 4. Sketch the slope field of the differential equation. Then use it to sketch a solution curve that passes through the given point.
 - a) y' = y 2x, (1, 0)
 - b) $y' = xy x^2, (0, 1)$
- 5. Consider the autonomous (only y and derivatives appear) differential equation $y' = y^2(3 y)(y + 1)$.
 - a) Find the equilibrium values of y.
 - b) Sketch the phase portrait (direction field) of this differential equation, paying particular attention to the behavior near equilibria.
 - c) Classify each equilibrium point as *stable* or *unstable*.
- 6. Consider the autonomous differential equation from the previous problem. Without solving the differential equation, determine the value of $\lim_{y\to\infty} y(t)$, where the initial value is
 - a) y(0) = 1
 - b) y(0) = 4
 - c) y(0) = -4